Increased propensity to seizures after chronic cortical deafferentation in vivo.

نویسندگان

  • Dragos A Nita
  • Youssouf Cissé
  • Igor Timofeev
  • Mircea Steriade
چکیده

Cortical injury may lead to clinical seizures. We investigated the changing patterns of the sleeplike slow oscillation and its tendency to develop into paroxysmal activity consisting of spike-wave (SW) complexes at 2-4 Hz after partial deafferentation of the suprasylvian gyrus. Experiments were carried out in anesthetized cats, at different time intervals (wk 1 to wk 5, W1-W5) after cortical undercut. Multisite field potentials and single or dual intracellular recordings from the whole extent of the deafferented gyrus were used. The field components of the slow oscillation increased in amplitudes and were transformed into paroxysmal patterns, expressed by increased firing rates and tendency to neuronal bursting. The incidence of SW seizures was higher with transition from semiacute (W1) to chronic (W2-W5) stages after cortical undercut. The propagation delay of low-frequency activities decreased from W1 to W5, during both the slow oscillation and seizures. The initiation of seizures took place in territories contiguous to the relatively intact cortex (area 5 in the anterior part of the gyrus), as shown by cross-correlations of field potentials from different sites and simultaneous intracellular recordings from the anterior and posterior parts of the gyrus. The increased amplitudes of both slow oscillation and SW seizures, and their enhanced synchrony expressed by shorter time of propagation, are ascribed to increased neuronal and network excitability after cortical undercut.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperexcitability of intact neurons underlies acute development of trauma-related electrographic seizures in cats in vivo.

Cortical trauma can lead to development of electrographic paroxysmal activities. Current views of trauma-induced epileptogenesis suggest that chronic neuronal hyperexcitability and extensive morphological reorganization of the traumatized cortex are required for the generation of electrographic seizures. However, the mechanisms responsible for the initiation of electrographic seizures shortly a...

متن کامل

Partial cortical deafferentation promotes development of paroxysmal activity.

This study tested the hypothesis that early functional alterations in neuronal synchrony in the partially deafferented cortex may lead to spontaneously occurring electrographic seizures. In vivo experiments with partial deafferentation of cat suprasylvian gyrus after extensive undercut of the white matter were conducted using multi-site EEG, extracellular unit and intracellular recordings. The ...

متن کامل

Synaptic strength modulation after cortical trauma: a role in epileptogenesis.

Traumatic brain injuries are often followed by abnormal hyperexcitability, leading to acute seizures and epilepsy. Previous studies documented the rewiring capacity of neocortical neurons in response to various cortical and subcortical lesions. However, little information is available on the functional consequences of these anatomical changes after cortical trauma and the adaptation of synaptic...

متن کامل

Age dependency of trauma-induced neocortical epileptogenesis

Trauma and brain infection are the primary sources of acquired epilepsy, which can occur at any age and may account for a high incidence of epilepsy in developing countries. We have explored the hypothesis that penetrating cortical wounds cause deafferentation of the neocortex, which triggers homeostatic plasticity and lead to epileptogenesis (Houweling etal., 2005). In partial deafferentation ...

متن کامل

O 20: The Role of Neuroinflammation in Epilepsy: A New Target for Treatment

Despite progress in pharmacological and surgical treatments of epilepsy, little is known about the processes that a healthy brain is rendered epileptic after seizure occurrence. Growing evidence supports the involvement of inflammatory processes, both the adaptive immunity and systemic inflammatory response, in induction of individual seizures as well as in the epileptogenesis. Clinical and exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 95 2  شماره 

صفحات  -

تاریخ انتشار 2006